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Abstract

We construct a publicly verifiable protocol for proving computational work based on collision-
resistant hash functions and a new plausible complexity assumption regarding the existence of
“inherently sequential” hash functions. Our protocol is based on a novel construction of time-

lock puzzles. Given a sampled “puzzle” P $←Dn, where n is the security parameter and Dn is the
distribution of the puzzles, a corresponding “solution” can be generated using N evaluations of
the sequential hash function, where N > n is another parameter, while any feasible adversarial
strategy for generating valid solutions must take at least as much time as Ω(N) sequential
evaluations of the hash function after receiving P. Thus, valid solutions constitute a “proof” that
Ω(N) parallel time elapsed since P was received. Solutions can be publicly and efficiently verified
in time poly(n) · polylog(N). Applications of these “time-lock puzzles” include noninteractive
timestamping of documents (when the distribution over the possible documents corresponds to
the puzzle distribution Dn) and universally verifiable CPU benchmarks.

Our construction is secure in the standard model under complexity assumptions (collision-
resistant hash functions and inherently sequential hash functions), and makes black-box use of
the underlying primitives. Consequently, the corresponding construction in the random oracle
model is secure unconditionally. Moreover, as it is a public-coin protocol, it can be made non-
interactive in the random oracle model using the Fiat-Shamir Heuristic.

Our construction makes a novel use of “depth-robust” directed acyclic graphs—ones whose
depth remains large even after removing a constant fraction of vertices—which were previously
studied for the purpose of complexity lower bounds. The construction bypasses a recent negative
result of Mahmoody, Moran, and Vadhan (CRYPTO ‘11) for time-lock puzzles in the random
oracle model, which showed that it is impossible to have time-lock puzzles like ours in the
random oracle model if the puzzle generator also computes a solution together with the puzzle.
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1 Introduction

A timestamping scheme is a mechanism for proving that a document was created before a certain
time in the past. Timestamping schemes have variety of applications, including the resolution of
intellectual property disputes (e.g., an inventor may timestamp her invention to prevent future
patent challenges) and providing evidence of predictive powers (e.g., a stock analyst could prove
that she correctly predicted stock price changes before they occurred).

We say a timestamping scheme is noninteractive if generating a timestamp does not require
communication with a third party. This is a desirable property, both because it makes timestamping
easily scalable (multiple parties generating timestamps do not interfere with each other), and it
allows parties to hide the fact that they are generating a timestamp; this might be crucial in some
scenarios (e.g., an inventor may not wish to reveal the fact that she has a new invention).

A natural cryptographic approach to timestamping is via proofs of work—use computational
effort invested as a measure of time elapsed. For example, if a party wants to be able to issue future
proofs that she knows a document D at time t0, then starting at time t0, she starts to evaluate a
“moderately hard” function g on document D. If we know that g takes time ≈ N to evaluate, then
the value g(D) can be considered a “proof” that D was known N time units in the past.

Note that here we need both an upper bound and a lower bound on the complexity of computing
g—an adversary should not be able to evaluate g on D much more quickly than an honest party
following the specified algorithm for g. In addition, we would like verifying y = g(D) (given D and
y) to be done much more efficiently than evaluating g on D from scratch.

These (initial) goals can be achieved by taking g = f−1 for a very strong one-way permutation
f : {0, 1}n → {0, 1}n, where we take the security parameter to be n = logN . Given a document
D ∈ {0, 1}n, the proof of work f−1(D) can be computed by brute force in time approximately
2n = N . Such a proof can be verified very quickly (e.g., in time poly(n) = poly(logN)). Moreover,
it is a plausible assumption that any efficient1 algorithm for inverting f will require time Ω(2n) =

Ω(N), at least on a uniformly random document D
$← {0, 1}n. (If D is not uniformly distributed,

then we can heuristically apply this construction to a hash of D, or even apply a publicly known
deterministic randomness extractor tailored to the distribution Dn from which D is sampled.) One
deficiency of the aforementioned construction is that, while it certifies that N units of computational
effort were invested after receiving D, this need not correspond to clock time, because an adversary
could parallelize its computational efforts (e.g., by using a bot-net to try many preimages at once).
Thus, we would like to have proofs of work that are inherently sequential, i.e., even a massively
parallel effort to evaluate g(D) would still take time close to N . (Of course, “time” is still relative
to single-core CPU speed, which may differ between the honest party and the adversary, but this
gap should be easier to gauge and control than what can be achieved by massive parallelism.)

Based on ideas from [CLSY93, RSW96], Jerschow and Mauve [JM10] proposed the following

timestamping function which is conjectured to be secure against parallel attack: g(D) = 22D

(mod N), for an RSA integer N whose factors are kept secret. A verifier who already knows

the secret factorization of N can check the computation efficiently using the “shortcut” 22D ≡
2(2D mod ϕ(N)) (mod N); if |N | ≈ |D|, this shortcut gives an exponential speed-up. The security
of this scheme is based on the conjecture that modular exponentiation is an inherently sequential
task without knowing the factorization of N .

1Here the adversary is assumed to be uniform, because a non-uniform attacker can in fact invert a one-way
permutation in time 2cn for some constant c < 1 [Hel80,FN99,DTT10].
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Time-Lock Puzzles. The idea of using modular exponentiation as a proof of sequential work was
first proposed by Cai, Lipton, Sedgewick and Yao [CLSY93], in the context of CPU benchmarks,
and by Rivest, Shamir and Wagner [RSW96] in the context of time-lock puzzles. In a time-lock
puzzle protocol, solving a puzzle should take approximately N time (even for a massively parallel
solver), while generating the puzzle and verifying the solution should take considerably less. Thus,
one can think of a time-lock puzzle as an interactive proof of sequential work and view a solution
to the puzzle as a proof that at least roughly N time units have elapsed since receiving the puzzle.

When used as a timestamping scheme, however, modular exponentiation has a serious drawback:
the verifier must know and keep secret the factorization of the modulus. In practice, this means
that the timestamper must decide in advance which verifiers to target. Moreover, if a verifier’s
secret key ever leaks, all timestamps using the corresponding public key can no longer be trusted.

To construct publicly verifiable timestamping schemes from time-lock puzzles, we employ public-
coin time-lock puzzles and interpret the document D as the coin tosses generating the puzzle P.

Generic Proofs of Work via Efficient Arguments. Suppose we are given an inherently
sequential function family: {fP : {0, 1}n 7→ {0, 1}n}P∈{0,1}poly(n) , meaning that computing the t-

fold composition f tP(0n) takes parallel time Ω(t) for a uniformly random P $← {0, 1}poly(n). A
natural attempt to construct a proof of work is to use simple iteration of f : the prover chooses a
function fP from the family (determined by the puzzle P) and begins with an initial fixed value
x0 = 0n. In iteration i, the prover computes xi = fP(xi−1) = f iP(x0). Assuming that every
adversary that outputs f tP(x) must run in time Ω(t), sending xt to the verifier constitutes a proof
of Ω(t) work. We can make the verification time poly-logarithmic in t by using an efficient (public-
coin) argument system to prove that xt was computed correctly. Efficient argument systems can
be constructed based on collision-resistant hash functions [Kil92, Mic00, BG08] and can be made
noninteractive in the random oracle model. This approach appears conceptually simple, but hides
complexity in the construction of the argument system: existing schemes all make use of complex
Probabilistically Checkable Proofs (PCPs), and this appears to be an inherent property of efficient
argument systems [RV10]. In contrast, the constants hidden in the asymptotic notation of our
constructions are very small (see Theorem 3.11 for the parameters). A second drawback of the
generic scheme is that it is non-black-box (a proof that xt was “computed correctly” necessarily
uses the code of the algorithm computing f). As well as being of theoretical interest, a black-box
construction has practical advantages: the implementation can be made in a modular way, changing
the underlying sequential function can be done easily and it may even be replaced with a hardware
module (or a corresponding physical assumption).

1.1 Our Results

In this paper, following Mahmoody et. al [MMV11], we study proofs of work (in the spirit of
Dwork, Goldberg, Naor, and Wee [DN92,DGN03,DNW05]) and noninteractive timestamping.

Time-Lock Puzzles and Noninteractive Timestamping. Our main result is the first black-
box construction of a time-lock puzzle (secure against parallel attack) with a public-coin puzzle
generator. As described above, this implies a publicly verifiable, noninteractive timestamping
scheme. Our construction relies on the existence of collision-resistant hash functions and a new
assumption that sequential hash functions exist; these are functions where it is infeasible to find
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any “hash chain” of length N in time� N , even if the adversary enjoys massive parallel computing
power (see Definition 3.7). Note that both assumptions hold in the random oracle model.

The following theorem states our main result informally; see Theorem 3.11 for a formal state-
ment.

Theorem 1.1 (Main Result—Informal). Given any family of collision-resistant hash functions H1

and any family of sequential hash functions H2 we construct a time-lock puzzle scheme that is secure
for a puzzle distribution D assuming that H1 and H2 are both secure when their index s is sampled
from the same distribution D.

The verification time for our time-lock puzzle (and the corresponding timestamping scheme)
can be poly-logarithmic in the time it takes to solve the puzzle, and the soundness time-gap (the
ratio between the running time of the honest solver and that of a successful adversarial solver) is
bounded by a constant. That is, our honest solver evaluates the hash function N times, and any
adversary whose solution is accepted by an honest verifier must have used time proportional to c ·N
sequential evaluations of the hash function for a constant c. Our construction is fully black box (in
the terminology of [RTV04]). After the puzzle is generated noninteractively, the verification process
for both the time-lock puzzle and corresponding timestamping scheme are interactive protocols (a
noninteractive timestamping scheme may still have an interactive verification stage). However,
since our construction is fully black box, it is unconditionally secure in the random oracle model,
and in this model we can make the verification noninteractive using the Fiat-Shamir Heuristic.

Universally Verifiable Benchmarks. Cai et al. [CLSY93] suggested using proofs of work for
running “uncheatable” benchmarks. Their idea is that a vendor can prove a supercomputer’s
performance by having it run a proof of work that is timed by the verifier. The soundness of the
proof-of-work protocol would guarantee that vendors couldn’t cheat by optimizing their code or
modifying it in some other way. Cai et al. proposed using exponentiation modulo an RSA integer
as the candidate function. This has the drawback, however, of being verifier-specific (since only the
verifier who generated the modulus and knows the secret factorization can trust the results). Our
time-lock puzzle construction combined with a public randomness beacon leads to a benchmark that
is “universally verifiable”: the randomness beacon would be used for puzzle generation (assuming
that the beacon’s output cannot be predicted by the vendor), and the vendor would publish the
solution. Since there is no secret information, anyone can verify the results of the benchmark.

Combinatorial Tools. Our construction involves a novel use of depth-robust graphs: these are
directed acyclic graphs on N vertices with low degree (e.g. polylogN) whose depth remains Ω(N)
even after removing any constant fraction of vertices. To prove that it has done a lot of compu-
tational work, our prover constructs a labeling of the vertices of a depth-robust graph G where
each vertex v should be labeled with uv = HP(uv1 , . . . , uvd), where v1, . . . , vd are all vertices that
have edges pointing to v, P is the puzzle, and H is a family of sequential hash-functions. (This is
well-defined and can be computed with O(N) hash evaluations due to the acyclicity of G.) It then
sends the verifier a short commitment to this labeling through a Merkle tree (see Section A) com-
puted using a collision-resistant hash function. During the verification, the prover is then asked
to reveal the labels of a few randomly chosen vertices v along with their in-neighbors, and the
verifier checks that uv = HP(uv1 , . . . , uvd) holds for each such vertex v. Intuitively, if the prover
can pass this check for a large fraction of vertices v, due to depth-robustness of G, the labeling
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constructed by the prover must have a hash chain of length Ω(N), and the prover must have used
time proportional to Ω(N) sequential evaluations of the hash function.

Depth-robust graphs were investigated in the 70’s and 80’s, motivated by efforts to prove lower-
bounds on circuit complexity and Turing machine time [EGS75, Val77, PR80, Sch82, Sch83]. We
use a construction of Erdős, Graham and Szemerédi [EGS75], which involves a recursive use of
constant-degree expander graphs. For different settings of parameters, depth-robust graphs are
related to matrix rigidity and the “grate” property of graphs, defined by Valiant [Val77]. As far as
we know, our work is the first “positive” use of depth-robust graphs.

Unconditional Security in the Random Oracle Model. In the random oracle model (ROM),
we assume that all parties have oracle access to a public random function O : {0, 1}∗ → {0, 1}n
(where n is the security parameter). The ROM provides us with a clean and convenient way of
lower-bounding both the total work invested by a party (namely the number of oracle queries)
and the parallel time invested (the number of rounds of adaptivity in oracle queries). For this
measure of computation time, it can be easily shown that a random oracle is sequential (a proof
appears in Section 5). Since our constructions make only black-box use of the hash functions, they
are unconditionally secure in the ROM. Although random oracles do not exist in the real world, a
common heuristic for instantiating protocols in the random-oracle model is to replace the oracle with
a cryptographic hash function (e.g., SHA-256) [BR93,FS86a]. While no concrete hash-function can
satisfy all the properties of an ideal random oracle (in fact, there are examples of schemes that are
provably insecure for any instantiation of the oracle by a concrete hash function [CGH04,GT03]),
it seams reasonable to conjecture that these functions are highly sequential.

1.2 Related Work

Timestamping. While physical timestamps have been in use for many years (e.g., having a no-
tary public physically stamp a document) their introduction to the digital realm, by Haber and
Stornetta [HS91], was more recent. Haber and Stornetta’s main idea relies on a Timestamping Ser-
vice (TSS): a trusted third party that is responsible for generating and managing the timestamps.
Further work in this direction has improved communication and computational complexity, and
allowed the use of an untrusted TSS (for examples, see [ABSW01, BHS92, BdM91, BdM93, BL98,
BLLV98, BLS00]). The state-of-the-art schemes using third-party Timestamping Services are effi-
cient, can give very precise timestamps and even hide the contents of a document that is stamped,
but necessarily reveal the fact that a party is stamping some document.

The first construction of a noninteractive timestamping scheme was given by Moran, Shaltiel
and Ta-Shma [MSTS09], in the Bounded Storage Model (BSM). In the BSM, parties have limited
storage space, and there exists a source that periodically broadcasts huge random strings to all
parties. (The strings are large enough that no party can store more than a constant fraction of a
string in every time period.) To generate a timestamp on a document at time t, the stamper uses
the document to select a subset of the random string at time t and stores that subset. At every time
period, verifiers store a small random subset of the random string. To prove that a timestamp is
valid, the stamper proves that her stored subset is consistent with the values stored by the verifier.

Proofs of Work. Dwork and Naor [DN92] originally suggested using proofs of work as a “pricing
mechanism” to fight SPAM and other denial-of-service (DoS) attacks. (They proposed that a sender
of an email message would provide a proof of work related to the message, making mass emailing
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more expensive.) For fighting SPAM, requiring the proof of work to be sequential is pointless: an
attacker who is trying to generate multiple messages can generate the proofs for each message in
parallel. On the other hand, they do care about preventing amortization attacks: computing the
proof for n messages in a batch should require approximately n times the work as computing the
proof for a single message. Dwork, Naor and Wee [DNW05] later considered a proof of work that
is memory-bound rather than CPU-bound; this is preferable as the variance between CPU speeds
is much larger than the variance between memory access times.

Hash Graphs. The work of [DNW05] also makes use of “hash graphs”. Dwork et al. use their
hash graph G to have the adversary (who provides the proof of work) to generate a random-looking
table T (which is larger than the cache size and will be used as a pointer-jumping table in the
proof-of-work protocol) by computing the hash labels of G using a random oracle and taking the
label of the output nodes as T . The crucial property of the hash graph G is that the adversary
should not be able to compute T by accessing the main memory only “a few” times and is forced to
encounter many cache misses. The hash graph G of [DNW05] is constructed by concatenating two
subgraph DAGs: G1 and G2 (where inputs of G2 are the outputs of G1) as follows. The DAG G1

is a super-concentrator (from [PTC77]) which is a sparse graph with high connectivity: for any set
S of s input nodes and any set T of s outputs nodes there are s vertex disjoint paths from S to T .
The graph G2 is a shallow DAG (of logarithmic depth) which is robust in the following sense: by
removing any “small fraction” of the nodes of G2 (together with their incident edges), still a “large
fraction” of the inputs and outputs remain connected. Thus, at a high level, [DNW05] also uses
some robust DAGs as we do in this work but with a different notion of robustness; their graphs
are shallow and are robust against losing connectivity of input and outputs, while our graphs have
large depth and preserve (most of) this depth even after removing some fraction of the nodes.

Non-Parallelizable Proofs of Work. Although the inherent sequentiality property is not very
useful against SPAM, inherently sequential proofs of work can be useful as a countermeasure
against DoS attacks in other cases. With this use in mind, several proof-of-work constructions
(called “client puzzles” in this context) have been suggested. These include an improvement in
the efficiency of Rivest et al.’s modular-exponentiation-based construction [RSW96] (by Karame
and Capkun [KC10]), but also constructions based on different “structural” assumptions with
conjectured security against parallel attacks: Tritilanunt et al. [TBFN07] constructed proofs of
work based on the hardness of solving subset-sum problems and assuming that the LLL algorithm
[LLL82] for finding the shortest vectors in lattices is optimal and inherently sequential. Jerschow
and Mauve [JM11] constructed proofs of work under the assumption that computing square roots
modulo a prime is an inherently sequential task. Both constructions are public coin, but they
achieve only a polynomial time-gap between puzzle generation and solution.

To the best of our knowledge, the only construction based on general unstructured assumptions
is the recent construction of Mahmoody, Moran and Vadhan [MMV11] in the random oracle model.
However, that construction only achieves a linear time-gap between puzzle generation and solution
and, similar to the modular-exponentiation-based constructions, is not public coin.

Bypassing a Lower-Bound. Mahmoody, Moran and Vadhan considered time-lock puzzles in
the random oracle model [MMV11] and proved that for a large class of time-lock puzzles, a large
gap between generation/verification time and time to solve the puzzle is not possible. This class of
time-lock puzzles include those in which the verifier does not query the oracle, which includes as a
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special case puzzles in which the generator produces a solution (sent to the verifier) together with
the puzzle itself. For any such puzzle, they show that if it requires t oracle queries to generate the
puzzle, the puzzle can be solved in t adaptive rounds of queries (with only a polynomial overhead in
the total number of queries compared to the honest solver). We bypass the lower-bound of [MMV11]
by constructing a verifier that does indeed query the oracle, and in fact our construction gives a
time-lock puzzle with a super-polynomial gap between solution and verification times.

2 Time-Lock Puzzles and Timestamping, Formal Definitions

In this section we formalize the notion of time-lock puzzles and its relation to proofs of work.

Definition 2.1. A time-lock puzzle is a game between three parties (Gen,Sol,Ver) who receive the
common input 1n for security parameter n and N = poly(n) > n as the “complexity of the puzzle”
and act as follows.

1. The puzzle generator Gen generates a “puzzle” P.

2. The puzzle solver Sol receives the puzzle P and outputs some “solution” S in time N ·poly(n)
(where poly(n) here is independent of N).

3. The verifier Ver receives the puzzle P and a solution S and either accepts or rejects. (This
step could be noninteractive or through interaction with Sol—see the discussion below).

We require the following properties. The exact definitions of the running time function Time(·)
and its parallel variant ParTime(·) depend on the underlying computational model.

• Completeness. In an honest execution Ver accepts with probability 1− negl(n).

• (Parallel) η-Soundness. The (parallel) η-soundness property asserts that every non-uniform

adversary Ŝol that runs in parallel time that is slightly smaller than the time of the honest
solver (ParTime(Ŝol) < η · Time(Sol)) will fail to convince Ver with more than negligible

probability (i.e., the probability that the output of Ŝol is accepted by Ver is negligible). We

allow the total work Time(Ŝol) to be much larger than Time(Sol) (as long as it is at most
polynomial in the security parameter).

Time Gap. For our applications, we are interested in time-lock puzzles where there is a “large”
time-gap between solving a puzzle (honestly or maliciously) and time it takes to verify a solution.

On Parallel Soundness. Intuitively, this guarantees that a successful Ŝol, after receiving the
puzzle, must have invested almost as much computational effort in terms of parallel-time complexity,
as the honest solver Sol does in terms of its running time (η measures the “slowdown factor” of the
honest solver compared to the parallel-time of the adversary—when η = 1 the adversary cannot
solve any faster than the honest solver even with massive parallelism, while when η = 1/2 the
adversary can run in half the time of the honest solver).

Note that we allow the adversary to perform arbitrary polynomial-time preprocessing before
receiving the puzzle. For simplicity, we omit this from the definition above. However, our proof
of security holds for a non-uniform adversary; in particular, this means we allow the adversary to
receive arbitrary “advice” (that does not depend on the input, P); any preprocessing done before
receiving P can simply be treated as advice.
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Interactive Verification. As we mentioned in Definition 2.1, the verification of the puzzle solu-
tion may be interactive (i.e., consist of an interactive protocol between the verifier and a “prover”
who has access to the secret state of the puzzle solver Sol). The time-lock puzzles we construct in
this paper have interactive verifiers. However, since their verification protocols are all public-coin,
using the Fiat-Shamir transformation they can be made noninteractive in the random-oracle model.

Public vs. Secret Verification. Since the puzzle generator and the verifier in Definition 2.1 do
not share any secret information, this definition guarantees that puzzles are “publicly verifiable”:
the verification protocol can be executed by any interested party. This property is especially
useful for noninteractive time-lock puzzles: the solution and proof are both strings and can be
easily published. The public verifiability means that anyone who receives the proof can verify
it, without needing to trust any third parties. One can also consider an alternative definition of
time-lock puzzles in which the puzzle generator and verifier do share secret information. This is
the case, for example, in the repeated-squaring based puzzle of Rivest et al. [RSW96] (the secret
information is the factorization of the modulus). The alternative definition is strictly weaker, and
limits verification to parties that know the secret.

Timestamping Documents. Now we discuss how our results in the context of time-lock puzzles
can be used for noninteractively timestamping documents. The type of timestamps we deal with
are relative timestamps: that is, if Alice produces a d-timestamp of a document D at time T then
she is claiming that she “knew” the document at time T − d. While relative timestamps can be
used to construct absolute timestamps (e.g., by continuously computing d-timestamps for larger
and larger d), they may also have direct applications. For example, suppose Alice believes she has
solved a hard research problem, but is hesitant to publish before completely verifying her result.
She can compute a one-week relative timestamp of her solution and store it; if, at some later time,
Bob claims to have solved the problem, Alice has one week in which she can prove that she had
a solution first. Our definition of security for timestamping is based on the following intuition: if
Bob receives a previously unknown document D′ at time T0, then at time T0 + d he should not be
able to produce a d′-timestamp of D′ for any d′ such that d′ � d.

Definition 2.2. A noninteractive timestamping scheme is a protocol between a stamper, Stamp
and a verifier, Ver. The protocol has two phases: In the stamping phase, the stamper receives
an input document D and a duration d and computes the timestamp S = Stamp(D, d). In the
verification phase, the stamper communicates with the verifier. The stamper sends (D, d,S) to
the verifier and proves that S is a valid d-timestamp of D (this may be done using an interactive
protocol). We also demand the following properties (where n is the security parameter).

• Completeness. We require a timestamping scheme to satisfy two completeness properties:

– When parties execute the game honestly Ver accepts with probability 1− negl(n).

– The honest stamper can compute Stamp(D, d) in d time.

• η-Soundness The soundness of the scheme is parameterized by η ≤ 1 (measuring how much
the adversary can cheat on the claimed timestamp duration) and by D, the distribution of
documents to be stamped. Consider the following game between an adversary Adv and Ver:

1. Adv receives a document D
$←D.
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2. Adv generates (S, d) and sends (D, d,S) to the verifier Ver.

3. Ver and Adv engage in the verification phase, after which Ver either accepts or rejects.

We say the timestamp scheme is η-sound w.r.t document distribution D if for every non-
uniform adversary Adv of size poly(n) and whose parallel time (including the verification
phase) is ParTime(Adv) < η · d, the probability that Adv wins in the security game (by
causing the verifier to accept) is negligible. (Note that, as in Definition 2.1, we allow the the
adversary to perform arbitrary preprocessing before receiving the document to timestamp.)

Timestamping Using Time-Lock Puzzles. For any time-lock puzzle (Gen, Sol,Ver) that is
η-sound we can envision (Sol,Ver) as defining a timestamping scheme that is η-sound against
documents in the distribution generated by Gen. That is, when Bob receives a document D at time
T and wants to timestamp it for duration d, he treats D as the puzzle and “solves” it for parameter
N such that Time(S) = N · poly(n) = d to obtain the timestamp S. The η-soundness of the
time-lock puzzle guarantees that no adversary running in parallel time less than η ·ParTime(Sol)
can convince the verifier to accept a valid timestamp. The distribution D models the uncertainty

about the documents to be timestamped. Any document D such that Pr[D
$← D] ≥ 1/ poly(n)

(where n is the security parameter) can be thought of as a “typical” document that the adversary
can “guess” in advance. Therefore, it is reasonable to restrict ourselves to distributions that satisfy

Pr[D
$← D] ≤ 1/ poly(n) for every D and every polynomial poly(n); namely, the distribution D

has super-logarithmic min-entropy. It is plausible to assume we have a family of hash functions H
that are simultaneously collision-resistant and inherently sequential for all index distributions with
super-logarithmic min-entropy (they exist in the random oracle model, and the two property can
always be “combined”–see Lemma 3.10). Our timestamping scheme will then inherit this property.

Security in the Presence of Auxiliary Information. Note that in Theorem 1.1, the distri-
bution D of the documents is the same as the index distribution of the used hash functions. The
distribution D could capture the uncertainty of the adversary about the document D conditioned
on the auxiliary information of the adversary about the document. Thus, if we want to guarantee
the security of our scheme under any auxiliary information (e.g., knowing only half of the docu-
ment), as long as there is ω(log n) bits of uncertainty about the final version of the document, we
can construct secure timestamping schemes under the assumption that the used hash functions are
also secure under any index distribution with super-logarithmic min-entropy.

Timestamping for Unknown Duration. A desirable feature of a timestamping scheme is to
allow the stamper to perform its job without knowing the time period d in advance. A simple
trick (that decreases η by a small constant factor) is as follows: The stamper iteratively generates
timestamps for d = 1, 2, . . . , 2i, . . . and always keeps the last generated timestamp as the current
timestamp. It is easy to see that this scheme achieves η′ ≥ η/4. Our time-lock puzzle (using
the specific construction of depth-robust graphs from Section 4) satisfies an even stronger property,
making it particularly suited for timestamping documents without knowing the duration in advance.
In our construction, for d2 > d1, the computation Sold1(P ) is a prefix of the computation Sold2(P );
thus, it is possible to run the stamper continuously, generating timestamps of increasing duration
and without paying the constant factor in η.
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3 Constructing Time-Lock Puzzles Using Depth-Robust Graphs

In this section we prove our main result which is a new construction of publicly verifiable time-lock
puzzles based on sequential hash functions and collision-resistant hash functions.

3.1 Outline and High-Level Ideas

The high-level idea is to force the solver to compute a labeling of a DAG G as a “hash-graph”
in which each node is labeled with the hash of its in-neighbors’ labels. The soundness of of our
construction will rely on a computational assumption about the hashes—namely that they are
inherently sequential (see Definition 3.7 below for a formalization). The sequentiality of the hash
functions ensures that any adversary that can output the label of an endpoint of a correct path
in the graph must spend time at least proportional to the length of the path (i.e., there are no
“shortcuts”). To check a proposed solution to the puzzle, the verifier will test random nodes in the
graph and check if they were computed correctly. We use an underlying DAG that has a special
combinatorial property called depth-robustness: in any large subset of the nodes of the hash-graph
there is a “long” path (see Definition 3.3). To achieve η-soundness with η arbitrarily close to
one we employ a modified version of the depth-robust DAGs constructed by Erdős, Graham, and
Szemerédi [EGS75] (see Section 4).

If too many nodes in the graph are badly labeled (i.e., their labels are not the hash of their
in-neighbors’ labels) the verifier will reject the solution with high probability. Thus, if the verifier
accepts we can use the combinatorial property of the graph to conclude that there must be a long
path consisting of nodes that were “correctly” computed, and from the sequential property of the
hash it will follow that the solver must have spent a “long” time performing the computation.

Finally, to reduce the communication and verification time, instead of sending the labeling of
the entire graph, the solver will commit to the graph labeling and send only the commitment to the
verifier. When the verifier challenges the solver on a specific node in the graph, the solver will send
the label of that node and the labels of its in-neighbors, and will prove that these are consistent
with the commitment. An efficient commitment scheme with all of the required properties is the
Merkle tree, which can be constructed based on any collision-resistant hash function.

3.2 Formal Definitions

In this subsection we provide the formal definitions required for stating and proving our theorems.

3.2.1 Standard Definitions

Definition 3.1 (Directed Acyclic Graphs). A directed acyclic graph (or DAG for short) G =
(VG, EG) is a directed graph whose vertices VG can be renamed as VG = {1, . . . , N}—called the
topological order—such that for every directed edge (i, j) ∈ EG it holds that i < j. We assume
that our DAGs are always given in topological order. For any vertex j ∈ [N ] we call IN(j) =
{i | (i, j) ∈ EG} the in-neighbors of the node j and call din(j) = |IN(j)| the in-degree of the vertex
j. We say G is of in-degree d if din(j) ≤ d for all j ∈ VG. We call a family {GN} of DAGs where
GN has N vertices and in-degree dN explicit if for any given i ∈ [N ] and j ∈ [dN ] one can compute
in time polylogN the index of the j-th in-neighbor of the node i.
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Remark 3.2. For simplicity we always assume that there is an extra redundant node 0 (not counted
in the number of vertices) such that for every j ∈ [N ] there are d− din(j) multiple edges from the
node 0 to the node j to make the in-degrees of every j ∈ [N ] exactly equal to d.

Definition 3.3 (Depth Robustness). For α ∈ [0, 1] and β ∈ [0, α], we call a DAG G = (VG, EG) an
(α, β)-depth-robust graph iff every induced subgraph H of G whose number of vertices is at least
|VH | ≥ α · |VG| includes a path with at least β · |VG| many vertices.

Our construction employs family of collision-resistant hash functions. We use the following
generalized definition that holds with respect to particular distributions over the index:

Definition 3.4 (Collision-Resistant Hashing). Let H =
{
hs : {0, 1}m(n) 7→ {0, 1}n

}
be a family of

shrinking functions and let Dn be a distribution over the indexes of H for security parameter n. We
call H collision resistant w.r.t D = {Dn} iff for every non-uniform adversary Adv of size poly(n),

if we choose s
$←Dn and let (x1, x2) = Adv(s), then Pr[hs(x1) = hs(x2) ∧ x1 6= x2] ≤ negl(n).

Remark 3.5 (Amplifying Shrinkage). It is well-known that by nested hashing and Merkle-Damg̊ard
construction any collision-resistant hash function with even one bit of shrinkage m(n) = n+ 1 can
be used (as a black-box) to construct hash functions with an arbitrarily large polynomial shrinkage
(i.e., m(n) = poly(n)).

3.2.2 Sequential Hash Functions

We define sequential functions by means of a game between an adversary and a challenger.

Construction 3.6 (Security Game of Sequential Functions). Let n denote the security parameter.
For every n and m = m(n) ≥ n, let H = {h : {0, 1}m 7→ {0, 1}n} be a family of functions mapping
m bits to n bits. The game is defined w.r.t a distribution Dn defined over the indices of H. Both
parties receive as inputs n, m and a “sequence-length” parameter N .

1. The challenger samples s
$←Dn as the index of the hash function and sends s to the adversary.

2. The adversary sends back some string y of length n.

3. After y is received by the challenger, the adversary sends back a sequence x1, . . . , xN .

The adversary wins if hs(xN ) = y and hs(xi) is a contiguous substring of xi+1 for all i ∈ [N − 1].

Definition 3.7 (Sequential Functions). Let τ(n) < poly(n), H =
{
hs : {0, 1}m(n) 7→ {0, 1}n

}
be a

family of (non-expanding) functions, and D = {Dn}n∈N be a family of distributions over the indexes

s ∈ {0, 1}poly(n) of H. The family H is called τ -sequential against D iff for every z = poly(N,n)
and every N < poly(n) 2 there is a negligible function λ = negl(n) such that every nonuniform
adversary Adv of total circuit size z whose depth till sending over y (in Step 2) is at most τ · N
wins in the security game of Construction 3.6 over common input n with probability at most λ.

The sequentiality parameter τ determines the level of confidence one has in the sequential nature
of H and is always at most t(n), where t(n) is the time it takes to call H(·) on an input to get an
n-bit output. On an extreme point, for a particular function H, one might believe that getting a
sequence of length N really needs N sequential evaluations of the function resulting in τ(n) = t(n).

2The reason we denote z = poly(N,n), even though it is equivalent to z = poly(n) (because of N = poly(n)) is
that Definition 3.7 is meaningful even if N grows faster or slower and any polynomial over n.
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Amplifying Shrinkage of Sequential Functions. Here we show that using a modified version
of Merkle-Damg̊ard construction one can also amplify the shrinkage of sequential functions.

Construction 3.8. Let H1 =
{
hs : {0, 1}m1(n) 7→ {0, 1}n

}
be a family of shrinking hash func-

tions. Let h1 ∈ H1 be a hash function determined by index s. We construct h2 ∈ H2 ={
hs : {0, 1}m2(n) 7→ {0, 1}n

}
described with the same index s in two steps as follows.

1. Suppose x = (x1, . . . , xm2) is a given input of m2 = m2(n) bits. We apply h1 to consecutive
intervals of m1 bits of x with interval shifts of m1−n. Namely, y1 = h1(x1, . . . , xm1), . . . , yi =
h1(x1+(i−1)(m1−n), . . . , xm1+(i−1)(m1−n)), . . . (we pad x with zeros at first, if necessary).

2. Using h1 and a Merkle tree we hash down y into a string z of length n and output z.

Lemma 3.9. Let H1 =
{
hs : {0, 1}m1(n) 7→ {0, 1}n

}
be τ -sequential and m1(n) = ρ · n for ρ > 1.

For m2(n) = poly(n), let H2 =
{
hs : {0, 1}m2(n) 7→ {0, 1}n

}
be the result of applying Construction

3.8 to H1. Then H2 is Ω(τ · logρ n)-sequential.3

Proof. The length y = (y1, y2, . . . ) (i.e., the concatenation of the outputs of the first step) is
n+ n · dm2−m1

m1−n e < n+m2/α = O(m2) = poly(n), so the depth of the Merkle tree (i.e. the second
step of computing h2) is d = Θ(logρ |y|) = Θ(logρ n).

We will show that any adversary Adv2 who finds a chain of length k in parallel time t (till
sending over the label of the last node of hte chain in the security game of Construction 3.6), can
be used (as a black-box) by and adversary Adv1 finds a bigger chain of length Ω(k · log n) in the
same parallel time that ends at the same point. All Adv1 does is to forward the ending point of
the chain, found by Adv2, to the challenger and then find a chain of length Ω(k · logρ n) for h1

using the chain reported by Adv2 for h2. In the following we explain how to find this bigger chain.
Suppose x1, . . . , xk is the chain found by Adv2. Let ` = Θ(log n) be the depth of the con-

struction of h2 using h1. Adv1 outputs a chain of length k · ` as follows. Every node xi of the
original chain will be turned into a sub-chain x0

i , . . . , x
`
i of length ` in such a way that these k

sub-chains can be properly connected into a chain of length k · ` as well. We now describe how
to find these sub-chains. We already know that H(xi−1) is a substring of xi. We would like to
define x0

i as a substring of xi so that H(xi−1) is still a substring of x0
i . This can be done due to

the first step of computation of h2. Namely, because in the first step of computing h2 we com-
puted h1 over intervals with shifts of m2 − n, for at least one of yj ∈ {y1, y2, . . .} it holds that
H(xi−1) is a substring of (x1+(j−1)(m1−n), . . . , xm1+(j−1)(m1−n)) (i.e., the preimage of yj). We take
x0
i = (x1+(j−1)(m1−n), . . . , xm1+(j−1)(m1−n)). The remaining points x1

i , . . . , x
`
i of the i’th sub-chain

can be found by traversing down the Merkle tree used in the second step of computing h2.

Combining Collision-Resistance with Sequentiality. The following lemma shows that the
seemingly unrelated properties of collision-resistant and sequentiality can in fact be combined.

Lemma 3.10. Let CH = {h : {0, 1}m 7→ {0, 1}n1} be a family of collision resistant hash functions
and SH = {h : {0, 1}m 7→ {0, 1}n2} be a family of sequential functions both w.r.t the same index
distribution D. Then there is a family of hash functions H = {h : {0, 1}m 7→ {0, 1}n1+n2} that is
simultaneously collision-resistant and sequential w.r.t the index distribution D.

3Even though it seems we have even improved the sequentiality of H1 by constructing H2, note that evaluating a
function h2 ∈ H2 takes Ø(logn) times longer as well.
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Proof. First we describe how to construct H. Let s ← D be an index sampled from D. Let
chs ∈ CH and shs ∈ SH be the hash functions described by d. Define hs ∈ H as hs(x) = (shs(x) |
chs(x)) where (· | ·) denotes the concatenation operation. We claim that the constructed family of
hash functions H is both collision-resistant and sequential.

If an adversary can find a collision x1 6= x2 for hs, the same pair (x1, x2) is a collision for chs.
Therefore, the collision-resistance of H directly follows from the collision-resistance of CH.

Now suppose an adversary Adv is able to break the sequential property of H with some
probability ε. Let y, x1, y2, . . . , xN be the strings returned by Adv in an execution of the security
game for hs ∈ H. Note that if hs(xi) is a contiguous substring of the string xi+1, then shs(xi) is
also a contiguous substring of xi+1. Therefore the very same adversary Adv breaks the sequential
property of SH with probability at least ε.

3.3 The Main Theorem

In this section we describe and prove our main result about the existence of time-lock puzzles based
on collision-resistant and sequential hash functions. As discussed above, this implies the existence
of timestamping protocols (a formal proof appears in Section 2).

Theorem 3.11 (Main Result). Let n be the security parameter, N = poly(n), d = d(n) = log3N ,
m = m(n) = d · n, and k = k(n) = ω(log n). Let H = {h : {0, 1}m 7→ {0, 1}n} be a family of hash
functions which is both τ -sequential and collision-resistant w.r.t the index distribution D4 and let
t = t(n) denote the time required for an honest user to evaluate h(x) for h ∈ H when h(x) ∈ {0, 1}n.
For any constant β < 1 there exists a time-lock puzzle as follows:

• Generation. The puzzle generator Gen simply outputs a sample P $←D.

• Solving. The honest solver Sol runs in time (t · (1 + o(1)) + polylogN) ·N .

• Verification. To answer the verifier’s challenges, the solver is only required to lookup the
answers from a table generated during solving the puzzle (no need for additional computation).
This only takes linear time over the answer size which is O(k) ·(d2 · logN ·n). The interactive
verifier Ver only asks k public-coin challenges, and to verify the received answers it runs in
time at most O(k) · (d · logN · t+ polylogN).

• Completeness. Ver accepts the interaction with honest solver Sol with probability 1.

• Soundness. No malicious solver Ŝol computed by a circuit of size poly(n,N) is able to make

Ver accept with probability more than negl(n) if Ŝol’s circuit has depth τ · N · β till sending
the puzzle solution.

Remark 3.12. It is easy to see that the soundness as stated in Theorem 3.11 implies η-parallel-
soundness (as stated in Definition 2.1) for η = τβ/(t(1 + o(1)) + polylogN). For N ≤ 2n

o(1)
, since

t ≥ n ≥ logω(1)N , if we assume τ = (1− o(1))t—which is a plausible conjecture when e.g. we use
SHA-256 and Merkle-Damg̊ard to get H—then we get η ≥ β(1− o(1)). By choosing the constant
β < 1 arbitrarily close to one, η also gets close to one, which is the best one might hope for.

4By Remark 3.5 and Lemma 3.10 this can be obtained from any collision-resistant hash function and a τ -sequential
hash function for m = 2 · n · log3 n and changing the security parameter by a factor of 2.
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3.4 Proving Theorem 3.11

We first describe our construction using an interactive verifier in a hybrid model with access to an
ideal commitment functionality Com that remains hiding against selective opening (the commitment
scheme allows a short commitment to a set of blocks (u1, . . . , un), and later allows the prover to
selectively open block uj for every j ∈ [N ]). We also use a DAG G in our construction. We then
replace the ideal commitment with a commitment scheme using Merkle tree based on the collision-
resistance of H, using Algorithms 5, 6, 7. We will also substitute G with a DAG with specific
properties. (see Section A for more details).

Construction 3.13 (Time-Lock Puzzle). Given n,N ∈ N an explicit DAG G of N vertices and
in-degree d, the time-lock puzzle Πn,N is as follows.

• The puzzle generator Gen outputs P $←Dn.

• The puzzle solver Sol runs Algorithms 1 and 2, and the puzzle verifier Ver runs Algorithm 3.

Algorithm 1 Honest solver Sol solving puzzle P using hash function hP ← H indexed with P ← D
and output length n, and a DAG G of in-degree d and N vertices given in topological order.

1: Initially assign the hash label u0 = 0n to the extra redundant node (see Remark 3.2).
2: for v ∈ {1, . . . , N} do {Compute the hash-labels corresponding to the nodes of G}
3: Suppose v1 ≤ · · · ≤ vd are the in-neighbors of v, and let uvi be the hash-label of vi.

Set uv = hP(uv1 , . . . , uvd).

Algorithm 2 Honest solver Sol answering a challenge for the generated solution c.

1: Receive a set of challenge nodes {v1 ≤ . . . ≤ vk} from the verifier.
2: for i ∈ {1, . . . , k} do
3: Open the commitments to uvi and uv for all v ∈ IN(vi).

Algorithm 3 Verifier of a solution for the puzzle P using sequential hash family hP ← H and the
DAG G of N vertices in topological order and in-degree d.

1: Receive the commitment c (supposedly for the hash labels (u1, u2, . . . , uN )) from the solver.
2: Randomly choose k nodes v1, . . . , vk from [N ] = VG and send them to the solver.
3: for i ∈ {1, . . . , k} do
4: Verify the commitment openings of uvi and uv for all v ∈ IN(vi).
5: Verify uvi = hP(uv(1,i) , . . . , uv(d,i)) where v(1,i) ≤ · · · ≤ v(d,i) are the in-neighbors of vi.

To prove Theorem 3.11, we use the following depth-robust graphs in Construction 3.13.

Lemma 3.14 (Explicit Depth-Robust Graphs). For all constants β < α < 1 and sufficiently large
N there is an explicit family of (α, β)-depth robust graphs with N vertices and in-degree ≤ log3N .

The proof of Lemma 3.14 is based on the ideas from [EGS75] and is presented in Section 4.
We now prove Theorem 3.11 by analyzing the properties of Construction 3.13 when instantiated
by depth-robust graphs specified in Lemma 3.14.
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Completeness. Clearly if the puzzle solver and the verifier follow Algorithms 1, 2, and 3, then
the verifier accepts with probability one.

Running Times. The following lemma can be verified by inspecting Algorithms 1, 2, and 3, and
the Merkle commitment algorithms of Section A. These bounds imply the bounds of Theorem 3.11
when substituting d = log3N which is the degree of the DAG G we will use.

Lemma 3.15. The running time of the parties in Construction 3.13 is as follows.

• Generation. The puzzle generator Gen simply outputs a sample string from Dn.

• Honest Solver. To generate the hash labels, the solver Sol first constructs the DAG G in
time N · polylogN and then evaluates the sequential hash h(·) N times for the vertices of
G (over inputs of length d · n and outputs of length n). To commit to the hash labels, by
Lemma A.1, the solver evaluates the collision-resistant hash function h(·) at most 3dN/de =
N · O(1/2) = N · o(1) times over inputs of length dn and outputs of length n. Therefore, if
calling h(·) takes time t, the total running time of Sol will be (t(1 + o(1)) + polylogN) ·N .

• Verifier. To answer each of the k challenges asked by the verifier, the solver (now playing as
a prover) needs to open commitments to d+ 1 labels. For each of these labels the opening of a
Merkle-commitment needs sending d logdN ≤ d·logN strings of length n (which are computed
already) to the verifier. Also, for each of these k challenges, the verifier first constructs the
relevant part of G in time polylog(N), and then it evaluates the sequential hash h(·) once (in
time t) and evaluates h(·) (d+ 1) · logdN times each in time t (see Algorithm 7).

Parallel Soundness. The following lemma shows that by using an explicit (α, β)-depth robust
graphs G for constants β < α from Lemma 3.14 in Construction 3.13, we can derive the soundness
property as stated in Theorem 3.11.

Lemma 3.16. For a given constant β < 1, suppose the DAG G used in Construction 3.13 is
(α, β)-depth-robust for α = (β+1)/2. Then any malicious solver who is a circuit of size poly(n,N)
and depth at most τ ·N · β till returning the puzzle solution is able to make the verifier accept with
probability αk + negl(n) .

We first prove Theorem 3.11 using Lemma 3.16 and then will prove Lemma 3.16.

Concluding Theorem 3.11. Theorem 3.11 follows as a corollary from Lemmas 3.14, 3.15,
and 3.16, and because α = (β + 1)/2 = 1− Ω(1) we have αk = negl(n) for k = ω(log n).

3.4.1 Proof of Lemma 3.16

Outline. For the committed labeling u1, . . . , uN by the adversary Adv, we call a node i ∈ [N ]
a good node if its hash label is indeed equal to the hash of the labels of its in-neighbors. If the
number of good nodes is at most α ·N , then the probability that the adversary can convince the
verifier is at most αk + negl(n). On the other hand, if the number of good nodes are more than
α · N then there should be path consisting of at least β · N many good nodes. The latter path,
however, corresponds to a “chain” of queries, and the sequential property of h(·) ensures that to
generate such a chain the adversary must run in time proportional to the length of the chain.
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More formally, the proof relies on a reduction showing how to use an adversary that can con-
vince a verifier to accept a solution while working in “small” parallel time to break the sequential
soundness of h by producing a “long” hash chain in “small” parallel time as follows. Given an
adversary Adv who breaks soundness of the time-lock puzzle scheme, we run Adv until it outputs
the commitment c and use c in the security game of sequential hash function. We then execute
poly(N,n) verification sessions using poly(N,n) copies of Adv to extract a “long” chain. In each
of these verification sessions we emulate a verifier that queries different vertices of the DAG, with
the hope that after this stage we gather the labeling of “many” vertices of the DAG. Since Adv
succeeds in convincing the verifier to accept with non-negligible probability, at most a constant
fraction of the extracted labels can be “bad” (i.e., don’t correspond to a hash of their in-neighbors’
labels). Thus, by the depth-robustness property of the graph G, there must be a long path of good
vertices in G. The concatenation of these vertices with the Merkle tree gives a long chain ending
at label c.

The Formal Proof. In the following we start by assuming (for sake of contradiction) that there
is an adversary Adv1 who breaks the parallel-soundness of Construction 3.13 with probability at
least ε1 ≥ 1/ poly(n) (when using a (α, β)−depth-robust graph of degree O(log3N)), has circuit
size poly(n,N) and depth τ · N · β till sending the puzzle solution. Then we will show how to
turn Adv1 into another adversary that either breaks the sequential property of h(·) or the binding
property of the commitment (which by Lemma A.2 implies breaking the collision resistance of h).

Lemma 3.17 (Extracting a Chain). Suppose Adv1 is an adversary who convinces the verifier of
Algorithm 3 with probability at least ε1 = ε′1 + αk. Then there is an algorithm Adv2 (described in
Algorithm 4) who executes ` = 2nN/ε′1 copies of Adv1, and then evaluates h(·) O(` ·k) times (and
makes an additional O(` · k · d) executions of the commitment scheme’s verification algorithm) and
Pr[E] ≥ ε′1/3 where E is the event that: Adv2 breaks the binding of Com(·) or there a chain of
length at least βN going (only) through nodes whose labels are successfully opened by Adv1.

Using Lemma 3.17 to Conclude Lemma 3.16. First note that assuming ε′1 > 1/ poly(n), the
running time of Adv2 is only poly(n,N) times that of Adv1. Using the adversary Adv2 we can
break the assumption that h(·) is τ -sequential or the collision resistance of hP(·) as follows. The
adversary Adv2 will simply forward the puzzle solution c of Adv1 (i.e., the Merkle-commitment

string) as the label of the last node of the chain. Then, suppose Adv2 is able to find a path
−→
PT

of length at least β · N in G whose labels are all accepted during the verification phase. Adv2

will simply return the labels of
−→
PT followed by the labels of the nodes connecting the last node

of
−→
PT to the root (which is c). Note that the revealed labels along the paths that connect the

nodes of
−→
PT to the root of the Merkle-tree are all consistent with hP(·) (and the last node of

−→
PT

is not an exception). Therefore, Adv is able to win in the security game of Construction 3.6 with
non-negligible probability by finding a chain of length β ·N + logdN > β ·N in depth < τ · β ·N
till sending c. This violates the assumption that h(·) is τ -sequential.

Proof of Lemma 3.17. The running time of Adv2 is at most O(Nn/ε′1) = poly(N,n) times more
than that of Adv2 (without considering the final verification). So we only need to prove the
existence of the long chain in h(·) in the view of Adv2, assuming that Adv2 did not break the
binding property of Com(·).
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Algorithm 4 Either find a collision or extract a β ·N -chain, by using oracle access to an adversary
Adv1 who convinces the interactive verifier with probability ε1 = ε′1 + αk.

1: Run Adv1 using random coins rand over a random puzzle P $← {0, 1}n and receive some com-
mitment c ∈ {0, 1}n. At this moment save the state of the adversary Adv1 since we are going
to execute Adv1 in many “different branches” by feeding many different challenge messages to
Adv1 and asking it to open those commitments.

2: Let δ = ε′1/(2N) and ` = n/δ.
3: For all j ∈ [`] choose a random subset Sj ⊆ [N ] of size |Sj | = k (possibly with repetitions).
4: for all j ∈ [`] do
5: Ask Adv1 to open the nodes in the challenge set Sj w.r.t the commitment c.
6: After receiving decommitments for (d+ 1) · k · ` many nodes in [N ] (possibly with repetitions),

run Merkle verification algorithm for all of them.
7: If two different openings for the same label are both accepted by the verifier, return a collision

in h according to Lemma A.2.
8: Let H be a graph with the same vertex set as that of G and no edges. For every challenge

node v (from the set of all ` · k nodes) that passes the Merkle verification, let v1, . . . , vd be the
in-neighbors of vi in G, and add the edges (v1, v), . . . , (vd, v) to the graph H.

9: Search for a the longest path
−→
PT in the graph H and return the labels of the nodes of

−→
PT

continued with the logdN labels of the nodes of the Merkle-tree decommitment connecting the

last node of
−→
PT to the root of the tree.

Since Adv1 succeeds in convincing the verifier with probability at least ε1, by an averaging
argument, with probability at least ε′1/2 over the choices of the puzzle P and the randomness of
Adv1 (i.e., rand), Adv1 will have at least a chance of αk + ε′1/2 (over the randomness of the
challenge) to convince the verifier. In the following we assume that the sampled P and rand in
Step 1 of Algorithm 4 have this property. We will show that in this case, Adv2 succeeds in finding
a (long enough) chain with probability at least 9/10, leading to a total probability of success at
least (ε′1/2) · (9/10) > ε′1/3.

Suppose W is the event that Adv1 succeeds in answering a random challenge set S of k nodes.
Call a node i ∈ [N ] a heavy node if Pr[i ∈ S and W ] ≥ δ = ε′1/(2N) for a random challenge set S
of size k. Call a node i ∈ [N ] light if it is not heavy. Let H be the set of heavy nodes and L be the
set of light nodes. We claim that the number of heavy nodes is at least α ·N . Otherwise Adv1 is
able to answer a random challenge S ⊆ [N ] of k nodes correctly only with probability:

Pr
S

[W ] ≤ Pr
S

[W and S ⊆ H] + Pr
S

[W and S ∩ L 6= ∅]

< αk +
∑
i∈L

Pr[W and i ∈ S] ≤ αk +N · δ

which is at most αk + ε′1/2 as opposed to the definition of δ. On the other hand, since Adv2

chooses ` random challenge sets Sj of size k, for every heavy node i ∈ [N ], the probability that
for some j ∈ [`] Adv1 can successfully decommit to all of the nodes in Sj while it includes i ∈ Sj
is at least 1 − (1 − δ)` > 1 − e−n > 1 − 2−n. Therefore, by a union bound, with probability at
least 1− 2−n ·N > 1− 2−Ω(n) for every heavy node v, the adversary will decommit successfully (at
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some point) into some hash labels for v and its in-neighbors. When this happens we call v a good
node, and call the (successfully opened) hash labels of v and its in-neighbors some extracted hash
labels. (Note that potentially we might extract different hash labels for v in different branches of
executing Adv1 over some challenge set S.)

We can safely assume that for all i ∈ [N ] all the extracted hash labels for the node i ∈ [N ]
(either extracted as the label of a sampled node in a challenge set, or as the label of an in-neighbor
of a challenge node) are identical. The is because otherwise we could break the binding property
of Com(·) by Lemma A.2.

Therefore with probability at least 1 − 2−Ω(n), we get at least α · N good nodes (with some
extracted hash label for them and also for their in-neighbors) and also it holds that all the extracted
hash labels are consistent (i.e., equal for the same node). By the (α, β)-depth-robustness of G, the

set of good nodes will have an induced path
−→
PT of size at least β ·N . For every node v ∈

−→
PT, let

wv be equal to the string (uv1 , . . . , uvd) where v1 ≤ · · · ≤ vd are the in-neighbors of v. Since
−→
PT

includes only good nodes that have passed the verification of the verifier, it holds that hP(wv) = uv
where uv is the extracted hash label of v. Hence, the sequence (wv)v∈

−→
PT

makes a chain of size β ·N .
Thus, conditioned on the quality of the sampled (P, rand) as discussed above, with probability
(1−2−Ω(n)) > 9/10 the adversary Adv2 gets a chain of size at least β ·N+logN > β ·N (including

the nodes connecting
−→
PT to the root of the Merkle tree).

4 Explicit Constructions of Depth Robust Graphs

In this section we prove Lemma 3.14 by showing how to obtain explicit (α, β)-depth robust graphs
for constants α, β < 1 that can be arbitrarily close to 1. Erdős, Graham and Szemerédi [EGS75]
constructed (α, β)-depth robust graphs for some constants 0 < β < α < 1 based on a recursive use
of constant-degree expanders. This construction can be made explicit using any explicit family of
such expanders.

Theorem 4.1 ( [EGS75]). There exists an explicit family {GN} of DAGs with N vertices and
in-degree d = O(logN) that is (α, β)-depth-robust for some constants 0 < β < α < 1.

Using the proof of [EGS75] one can obtain, e.g., α = 99/100, β = 1/100, but by minor modi-
fications to the construction of [EGS75] one can obtain constants (α, β) that are arbitrarily close
to 1 at the cost of larger degrees log2N . For sake of completeness, in Section 4 we describe this
construction. Our construction follows that of [EGS75] closely, with the difference that we use
denser expanding graphs in the recursive construction.

Definition 4.2 (Expanding Graphs). A bipartite graph G = (V1, V2, E), |V1| = |V2| = M is A-
expanding if for every S1 ⊆ V1 and S2 ⊆ V2 such that |S1| = |S2| = dM/Ae there is an edge from
S1 to S2.

We use explicit constructions of A-expanding graphs of [RVW00,RVW01].

Construction 4.3. For simplicity suppose the number of vertices of our graph G is a power of two
N = 2t, and let γ = ε/logN = ε/t for arbitrarily small constant ε. We use the following recursive
construction to get G = Gt. Let G1 be a two-vertex graph with an edge between them. Informally,
Gi+1 consists of two identical copies of Gi connected with the edges of a bipartite (1/γ)-expanding
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graph. Formally, Gi+1 = ((Li+1, Ri+1), Ei+1), where Li+1 =
{

1, . . . , 2i
}

, Ri+1 =
{

2i + 1, . . . , 2i+1
}

and the edges are
Ei+1 := Ei ∪

{
(u+ 2i, v + 2i) | (u, v) ∈ Ei

}
∪ E′i+1 ,

where G′ = ((L,R), E′i+1) is an explicit (1/γ)-expanding graph for L =
{

1, 2, . . . , 2i
}

and R ={
2i + 1, . . . , 2i+1

}
.

Degrees and Explicitness. The explicit expanding graphs we used in Construction 4.3 to con-
nect the two copies of Gi are all of in-degree Õ(logN) < log2N for large enough N . Since the depth
of the recursion is dlogNe, the total in-degree of the final graph is at most Õ(log2N) < log3N
for large enough N . The explicitness of our constructed graph follows from the explicitness of the
expanding graphs used. In particular, given any node v ∈ [N ] = [2t] let v−1 = (bt, . . . , b1) where bi
is the i-th bit of the binary representation of v− 1. To know the list of in-neighbors of v in G = Gt
we will consider every i ∈ [t] such that bi = 1. The fact that bi = 1 means that in the construction
of Gi, the node v has been in the set Ri and we should find the list of the vertices Li that are
connected to it. The list of in-neighbors of v in Gi (which are due to the edges of the expanding
graphs planted in Gi) can be computed in time polylogN (due to explicitness of Gi). Suppose the
latter list is {v1, . . . , v`} where the binary representation of the numbers vj − 1 (for all j ∈ [`]) have
i − 1 bits. To get the index of vj as a node in G we can take uj = 1 + (bt, . . . , bi+1, 0, (vj − 1)).
To find out all the in-neighbors of v in G we just have to go over all i ∈ dlogNe and extract the
in-neighbors as above.

Depth-Robustness. We now prove the depth-robustness of the DAG of Construction 4.3.

Lemma 4.4. For every i and α ∈ (0, 1), the graph Gi is (α, α − iγ)-depth-robust, and since
γ = ε/logN , the final graph G = GlogN is (α, α− ε)-depth-robust for every α ∈ (0, 1).

Proof. The proof is by induction over i. For i = 1, Gi consists of two vertices, and is trivially
(α, α) depth-robust for all α ∈ (0, 1). Assuming the hypothesis holds for i, consider the graph
Gi+1 = ((Li+1, Ri+1), Ei+1).

Fix an arbitrary α ∈ (0, 1). Suppose we select a subset S of the nodes of Gi+1 of size at least
α · 2i+1 and call them “good” nodes. Let δ2i be the number of good nodes SL ⊆ S in Li+1. Since
the total number of good nodes is α2i+1, there must be at least (2α − δ)2i good nodes SR ⊆ S in
Ri+1. Below, by the length |P | of a path P we denote the number of vertices in it.

By the induction hypothesis, there exists a path PL ⊆ SL of good nodes such that |PL| ≥
(δ − iγ)2i. In the same way, there exists a path PR ⊆ SR such that |PR| ≥ (2α− δ − iγ)2i.

We must show that there exists a path P ⊆ SL ∪ SR = S such that |P | ≥ (α− (i+ 1)γ)2i+1. If
δ ≤ 2γ, then we can simply set P = PR, since in this case |PR| ≥ (2α−(i+2)γ)2i ≥ (α−(i+1)γ)2i+1.
On the other hand if δ ≥ 2α − 2γ, then in the same way we can set P = PL. Otherwise, consider
the set P̂R ⊆ PR consisting of the first dγ2ie nodes on PR and the set P̂L ⊆ PL consisting of the
last dγ2ie nodes on PL. Since Gi+1 contains a (1/γ)-expanding graph between the nodes of Li+1

and Ri+1, and given that |P̂L| = |P̂R| = dγ2ie, there exists an edge (vL, vR) ∈ Ei+1 going from P̂L
to P̂R. We define our new path P by connecting (most of) the paths PL and PR together with the
edge (vL, vR) as follows: P is defined to be the nodes in PL up to the node vL, concatenated with
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the nodes of PR starting from the node vR. This way the number of vertices in P is at least

|P | ≥ |PR| − (dγ2ie − 1) + |PL| − (dγ2ie − 1)

> (δ − iγ + 2α− δ − iγ)2i − 2γ2i = (α− (i+ 1)γ)2i+1 .

5 Time-Lock Puzzles in the Random Oracle Model

Our construction for Theorem 3.11 makes black-box use of sequential hash functions and collision-
resistant hash functions. Both primitives can be easily constructed with unconditional security
in the random oracle model (when time-complexity is measured by the number of oracle queries
rather than computational effort) for every index distribution with super-logarithmic min-entropy.
As a consequence, in this model we get unconditionally secure time-lock puzzles and time stamping
schemes for any puzzle and/or document distribution with super-logarithmic min-entropy. More-
over, we can obtain time stamping protocols for any document distribution of super-logarithmic
min-entropy.

More formally, in the random oracle model we model Time(·) as the number of oracle queries
and ParTime(·) as the number of rounds of oracle queries. However, in the random oracle model
(ROM), we can get stronger results: our construction is noninteractive and unconditionally secure.
We prove the following theorem.

Theorem 5.1 (Main Result in ROM). Theorem 3.11 holds relative to any random oracle mapping
{0, 1}∗ to {0, 1}n unconditionally for any distribution D of the messages with min-entropy ω(log n).
Moreover the verification of the scheme is noninteractive (i.e., no challenge is sent from the verifier
to the puzzle solver).

We prove Theorem 5.1 by proving the following lemma, and using Fiat-Shamir transformation
[FS86b] in the random oracle model.

Lemma 5.2. Suppose D = Dn is a distribution with min-entropy at least ω(log n). Then relative
to a random oracle from {0, 1}∗ to {0, 1}n, there are efficient hash functions H,H such that H is
collision resistant according to Definition 3.4 and H is sequential according to Definition 3.7.

5.1 Unconditional Interactive Construction in the Random Oracle Model

In this subsection we prove Lemma 5.2.

Implementing Hash Functions h(·) and h(·). For puzzle distributions of super-logarithmic
mi-entropy, we pad the puzzle to become of size |P| ≥ n, and we use a random oracle of the same
security parameter O : {0, 1}∗ 7→ {0, 1}n as follows. The sequential hash function indexed by the
puzzle P, denoted hP(·) is defined as follows: hP(x) = O(P, 0, x). To get the collision resistant
hash function, we use hP(x) = O(P, 1, x) to map 2n bit strings to n bits.

Note that since our adversaries in this work always ask poly(n) < 2o(n) queries to O, at the

time P $←D is sampled, (except with negl(n) probability) no query with prefix P is asked to O
and therefore we can safely assume that both oracles h(·) and h(·) are completely random even
conditioned on the poly(n) preprocessing queries asked by the adversary. Therefore, to prove
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Lemma 5.2 we just need to prove that random oracles can be directly used to get sequential and
collision-resistant hash functions.

First we recall the well-known fact that a random oracle is collision-resistant.

Lemma 5.3 (Random Oracle is Collision-Resistant). Suppose h(·) is a random oracle from {0, 1}∗
to {0, 1}n. Then any adversary who asks at most 2o(n) queries to h(·) is able to find a collision
x 6= x′, h(x) = h(x′) with probability at most 2−Ω(n).

Second we prove that the h(·) is indeed a sequential function.

Definition 5.4. A chain of length r relative to the oracle h(·) is a sequence of strings w0, w1 . . . , wr
such that h(wi−1) is a (contiguous) substring of wi for all i ∈ [r].

Lemma 5.5 (Random Oracle is Sequential). Suppose h(·) mapping {0, 1}∗ to {0, 1}n. Then, no
adversary with oracle access to h(·) can break the η-sequential of h(·) according to Definition 3.7
for any η < 1 and any N = 2o(n).

Proof. We use the following two claims to prove the lemma.

Claim 5.6. Suppose A is an oracle algorithm who asks 2o(n) queries of length at most 2o(n) to h(·)
in r − 1 adaptive rounds. The probability that A’s queries include a chain of length r is at most
2−Ω(n).

Claim 5.7. Suppose h : {0, 1}∗ 7→ {0, 1}n is distributed uniformly at random conditioned on a set
of 2o(n) input/output pairs S. Namely, S contains pairs (x, y) (where |y| = n) for which we know
h(x) = y and h(·) is randomly mapped to {0, 1}n otherwise. Suppose T is another set of size at
most 2o(n) containing some possible outputs (i.e., |y| = n if y ∈ T ). Suppose a computationally
unbounded adversary A who knows the set S asks at most 2o(n) queries to h(·) and wins the game
if it could output some (x, y) such that y ∈ T and (x, y) 6∈ S. Then the probability of A winning is
at most 2−Ω(n).

We first prove Lemma 5.5 using Claims 5.6 and 5.7, and then will prove these claims.

Proving Lemma 5.5. Suppose Adv is an adversary with oracle access to h(·) who can break
the sequential property of h(·) according to Definition 3.7. Let S be the set of oracle query/answer
pairs known to Adv till it sends y as the last node the chain (in Construction 3.6). By Claim 5.6,
except with probability 2−Ω(n), S has no chain of length at least N . Since S does not have any
change of length at least N , if Adv, at the end of the game (of Construction 3.6) outputs any chain
of length at least N ending at y, it implies that Adv has managed to find some (x′, y′) such that:

1. h(x′) = y′.

2. (x′, y′) 6∈ S.

3. y′ is either equal to y or (x, y′) ∈ S for some x.

Since Adv asks only 2o(n) queries, by defining T = {y} ∪ {y′ | (x′, y) ∈ S} and applying Claim
5.7 we conclude that the adversary can not win the security game of Construction 3.6 except with
probability 2−Ω(n).
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Proving Claim 5.6. Suppose A has asked the queries x1, . . . , x` so far and is about to ask a new
round of queries y1 . . . , yq. We claim that with probability 1−2−Ω(n) the new queries y1, . . . , yq can
only be the last nodes in any new chain in the view of A. Since the total number of queries of A
is 2o(n) we only need to prove the latter claim for one of the new queries, yi ∈ {y1, . . . , yq} and the
claim follows by a union bound. Let X = {x1, . . . , x`, y1, . . . , yi−1, yi+1, . . . , yq} be all the queries of
A asked (or about to be asked) so far other than yi. The total number of (contiguous) substrings
of length n among all the elements of X is at most 2o(n) · 2o(n) ≤ 2o(n) (because all those queries
are of length 2o(n) any substring is determined by choosing two points in the string). Since the
answer to h(yi) is a random string of length n, this answer will be different from all the contiguous
substrings of the elements of X with probability at least 1− 2−n2o(n) = 1− 2−Ω(n).

Therefore, with probability at least 1− 2−Ω(n) the length of the longest chain in the view of A
can increase in each rounds of adaptive queries of A only by one (except with probability 2−Ω(n)).
Thus (by induction) the probability that A can output a chain of length r in r−1 rounds of queries
is at most 2o(n) · 2−Ω(n) = 2−Ω(n).

Proving Claim 5.7. The adversary A has to find some x′ such that h(x′) ∈ T while the answer
to x′ is not previously fixed by S. Any new query x′ (i.e., that there is no y such that (x′, y) 6∈ S)
asked by A will be mapped by h(·) to a point in T with probability at most |T | · 2−n = 2−Ω(n).
Since the total number of queries asked by A is at most 2o(n), the chance of A winning will be
bounded by 2o(n) · 2−Ω(n) ≤ 2−Ω(n).

Lemmas 5.5 and 5.3 together Lemma 5.2, which in turn proves our Theorem 5.1 for the case of
interactive verification.

5.2 Noninteractive Verification Using the Fiat-Shamir Transformation

In the random oracle model, by using the Fiat-Shamir transformation of Lemma 5.8 we can remove
the challenge message of the verifier in Construction 3.13 to make the verification completely
noninteractive and obtain Theorem 5.1.

Similarly to the previous subsection, here also we assume w.l.o.g. that the oracle O is completely

random at the time the puzzle P $←D is chosen and given to the adversary. This is because we
can pad all queries to O with (P, 3) and apply a similar argument to that of the sequential and
collision hash functions H,H above based on the ω(log n) min-entropy of D.

The following transformation is due to Fiat and Shamir [FS86a] and shows how to remove
interaction from public-coin protocols in the random oracle model. For completeness, here we
prove a special case in which there is only four messages exchanged, while we are interested in
(almost) preserving the adaptivity of the adversary.

Lemma 5.8 (Fiat-Shamir Transformation). Suppose (P, V ) is two party protocol using a random
oracle O of output length n as follows.

• The protocol has only 4 messages: v1, p1, v2, p2 where v1 and v2 are public-coin messages of
V and V does not use any private randomness to make her final decision.

• We have |v1| = n and |v2| ≤ ` · n.

• The verifier rejects its interaction with probability 1− ε against any prover P̂ who:
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1. P̂ asks a total of q queries to the random oracle O.

2. P̂ has at most r rounds of adaptivity in its queries.

Suppose (P ′, V ′) is a two-message protocol defined based on (P, V ) as follows: The second message
v2 of V is removed from the protocol and instead the oracle answers to the following queries are
used O(v1, p1, 1),O(v1, p1, 2), . . . ,O(v1, p1, `). (Note that the number of obtained random bits this
way will be exactly n · ` = |v2|.) This randomness is used by the parties and the two messages of

the prover (p1, p2) are sent together. Then it holds that any adversary P̂ ′ who interacts with V ′

and asks q′ = q/` number of queries to O and has at most r′ = r − 1 rounds of adaptivity is able
to convince V ′ with probability at most ε′ = ε · q.

Proof. For sake of contradiction suppose P̂ ′ is an adversary who interacts with V ′, asks at most
q′ = q/` queries to O, has at most r′ = r − 1 rounds of adaptivity, and is able to convince V ′ with
probability ε′ > ε · q. We show how to get an adversary P̂ who interacts with V , asks at most
q′ · ` = q oracle queries, has at most r rounds of adaptivity and is able to make V accept with
probability at least ε′/q = ε, which is a contradiction.

First we modify P̂ ′ as follows.

• P̂ ′ never asks any query twice.

• P̂ ′ always asks the queries O(v1, p1, 1),O(v1, p1, 2), . . . ,O(v1, p1, `) before sending (p1, p2) in
one round of adaptivity, if not asked already.

• If P̂ ′ makes any query of the form O(v′1, p
′
1, j) for any p′1 and j ∈ [`], it also asks all the other

queries {O(v′1, p
′
1, i) | i ∈ [`], i 6= j} in the same round of adaptivity. (Note that O(v′1, p

′
1, j)

might be asked when v1 is not known or p1 is not decided yet).

The above changes might increase the total queries of P̂ ′ by a factor of ` and might add one
round of adaptive queries to P̂ ′. The adversary P̂ works as follows:

1. When P̂ ′ asks for v1, receive v1 from V and forward it to P̂ ′.

2. Choose i
$← [q] at random.

3. Emulate the execution of P̂ ′ by preserving the adaptivity of the queries as follows.

(a) When P̂ ′ asks its i-th query O(y), if y is not of the form (v1, p
′
1, j) for some (p′1, j ∈ [`])

then abort. Otherwise do the following:

i. Send p′1 back to V as the first message of the prover and receive v2.

ii. Use v2 to answer the query O(y) as well as all of {O(v′1, p
′
1, i) | i ∈ [`], i 6= j} that

are going to be asked in the same round of adaptivity.

(b) When the emulation of P̂ ′ is finished, suppose (p1, p2) is the generated message. If p1 is
different from p′1 (which was part of y) abort, otherwise send p2 to V .

We claim that with probability 1/q over the random choice of i
$← [q] the game above is a perfect

emulation of the game in which P̂ ′ interacts with V ′. The reason is that with probability 1/q the

emulating adversary P̂ guesses the actual query O(v1, p1, 1) of P̂ ′ correctly, in which case since v2
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is completely random, we get a perfect emulation of the game of interaction between P̂ ′ and V ′

in the random oracle model (where a particular oracle query is answered using fresh randomness).
Thus the emulation above leads to the accept of V with probability at least ε′ · 1/q = ε, while the
number of rounds of oracle queries asked by P̂ is at most r.

6 Open Questions

Space Complexity of the Solver. In our construction of time stamping and time-lock puzzles
for time N , the solver keeps the hash labels of a graph of N vertices. Is there any other solution
that uses o(N) storage? Or is there any inherent reason that Ω(N) storage is necessary?

Necessity of Depth-Robust Graphs. The efficiency and security of our construction is tightly
tied to the parameters of depth-robust graph constructions: graphs with lower degree give more
efficient solutions, while graphs with higher robustness (the lower bound on the length of the longest
path remaining after some of the vertices are removed) give us puzzles with smaller adversarial
advantage. An interesting open question is whether the converse also holds: do time-lock puzzles
with better parameters also imply the existence of depth-robust graphs with better parameters?

Using Time-Lock Puzzles to Achieve Fairness. One motivation for studying time-lock puz-
zles, and timed assumptions in general, is that they can be used to solve problems that are provably
impossible in the standard model. For example, Boneh and Naor showed that timed commitments
(ones that can be opened without the key in certain amount of time, but not faster) can be used
to perform fair coin flipping [BN00], which was previously shown by Cleve to be impossible in the
standard model [Cle86]. Boneh and Naor construct timed commitments based on the same as-
sumption used by Rivest et al. [RSW96] to construct time-lock puzzles (the inherent sequentiality
of exponentiation). Briefly, their coin-flipping protocol is as follows: Alice chooses a random bit ba
and sends Com(ba) to Bob, where Com is a timed commitment. Bob chooses a random bit bb and
sends bb to Alice. Alice verifies that bb arrived fast enough (so Bob could not have forced open her
commitment), and then opens the commitment. The result of the coin-flip is ba ⊕ bb. The “timed”
part of the commitment is used if Alice aborts before opening her commitment. In that case, Bob
can spend a moderate amount of time to force-open the commitment and recover ba without Alice’s
help. For this protocol to work, the time it takes to force open a commitment must be more than
the maximum network latency. On the other hand, for efficiency, the time it takes to honestly open
a commitment should be short as possible.

Mahmoody et al. [MMV11] showed that, in the random oracle model, timed commitments
with a large time-gap (between the forced opening and an honest opening) cannot be constructed,
hence we cannot use black-box constructions to implement them in the standard model. A natural
approach would be to replace the timed commitment in the coin-flipping protocol with our proof
of work: Alice sends a puzzle P to Bob, Bob sends a random bit-vector b2, then Alice sends a
bit-vector b1 and proves it is the solution to the puzzle P . The result is taken to be b1 · b2. This
would be less efficient than using timed commitments, since Alice has to solve the puzzle even
in an honest execution, but she can do the work offline, leaving the online phase of the protocol
efficient. Unfortunately, this protocol is insecure: the soundness of our proof of work ensures that
Alice spends time proportional to the honest solver, but still she may convince Bob to accept an
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incorrect solution b1. An interesting open question is whether fair secure computation (and in
particular fair coin flipping) is possible based on black-box sequentiality assumptions.
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A Commitments by Merkle Trees

Algorithm 5 shows how a Merkle tree is computed as a commitment to a set of strings with the
possibility of opening the commitment to each string separately. Algorithm 6 describes how the
opening is performed. To verify the decommitment of Algorithm 6 the receiver simply verifies the
corresponding hash evaluations according to Algorithm 7. For simplicity, in this section we assume
that the N strings being committed to are indexed by {0, 1, . . . , N − 1} (rather than [N ]), but
when we use the Merkle commitment we might choose to index the strings with [N ].

Algorithm 5 (Merkle Commitment) For a hash function h : {0, 1}dn 7→ {0, 1}n and N strings
u1, . . . , uN from ui ∈ {0, 1}n the Merkle tree is computed as follows.

1: Let t = dlogdNe.
2: for i ∈ {0, . . . , N − 1} do
3: set cti = ui.
4: Let Nt = N .
5: for j ∈ {t, t− 1, . . . 1} do {compute (j − 1)-th “layer” of the Merkle tree}
6: Let Mj = d · dNj/de be the number of strings for layer j.
7: for i ∈ {Nj , . . . ,Mj − 1} do

8: set cji = 0n (i.e., pad the new needed strings with 0n)
9: for i ∈ {0, 1, . . . , (Mj/d)− 1} do

10: Let cj−1
i = h(cjdi, c

j
di+1, . . . , c

j
di+d−1)

11: Output c = c0
0 as the commitment string.

Algorithm 6 (Merkle Opening) For a hash function h : {0, 1}dn 7→ {0, 1}n and as the Merkle
commitment c ∈ {0, 1}n for N strings of length n, the opening algorithm is as follows.

1: Receive some index i ∈ {0, . . . , N − 1} as the index of the string to be opened.
2: Output ui as the decommitment value.
3: To help the verifier verify the decommitment ui, let i = b1 . . . bt be the representation of i in

base d (i.e., i =
∑

j∈[t] bjd
t−j and bj ≤ d for all j ∈ [t]).

4: for j ∈ {t, . . . , 1} do
5: Output cj = (ĉj0, . . . , ĉ

j
d−1) where ĉji = cj(b1,...bj−1,i)

for i ∈ [d] (from the j-th layer).

First we bound the number of commitments in a Merkle-Tree of degrees d.

Lemma A.1. For any d ≥ 2, Algorithm 5 makes at most 3dN/de queries to h.
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Algorithm 7 (Merkle Verification) For a hash function h : {0, 1}dn 7→ {0, 1}n and a received
c ∈ {0, 1}n as the Merkle commitment of N strings of length n, verify as follows.

1: Send i ∈ {0, . . . , N − 1} (i.e., the index of the string desired to be decommitted) to the opener
of Algorithm 6 and let i = b1 . . . bt be the representation of i in base d.

2: Receive ui as the decommitment value, and also receive cj = (ĉj0, . . . , ĉ
j
d−1).

3: Verify that ui = ĉtbt .
4: Define ĉ0

0 = c (where c is the commitment string received before).
5: For all j ∈ {t, . . . , 1} (can be done in parallel) verify that h(cj) = ĉj−1

bj−1
.

Proof. In the top layer of the hashing, the number of calls to h is dN/de which is also the number
of elements we get in the layer below. So, by induction, it is sufficient to prove

dN/de+ 3ddN/de
d
e ≤ 3dN/de

which since dx/de < x/d+ 1− 1/d it is implied by

3(dN/de/d+ 1− 1/d) ≤ 2dN/de. (1)

For any d ≥ 3, to get Inequality (1) it is sufficient to have 3(dN/de/d + 1) ≤ 2dN/de which is
implied by dN/de ≥ 3. But if dN/de ≤ 2, the number of queries to h will be at most dN/de+ 1 ≤
3 ≤ dN/de3.

For d = 2, to get Inequality (1) it is sufficient to have 3(dN/2e/2 + 1/2) ≤ 2dN/2e which is
equivalent to dN/2e ≥ 3. For dN/2e ≤ 2 the claim can be verified by inspection.

The following lemma asserts that if the family of hash functions H from which h(·) is sampled
is collision resistant, then the commitment scheme based on the Merkle tree is binding. It can be
shown that the commitment using Merkle trees has some strong hiding properties as well, but here
we are only concerned with the binding property of such efficient commitments.

Lemma A.2. Suppose Adv is an adversary who sends a a Merkle-commitment string c ∈ {0, 1}n,
then send some i ∈ [N ], and finally Merkle-decommit successfully into two different values ui 6= u′i
(as the i-th string). Then there is an adversary Adv′ who executes Adv as a black-box, asks
O(logN) more queries to h(·), and finds a collision: x 6= x′, h(x) = h(x′).

Proof. Let t = dlogdNe. Suppose Adv is able to decommitment successfully into two differ-
ent strings ui 6= u′i as the i-th string w.r.t the same commitment string c. For j ∈ [t] let

cj = (ĉj0, . . . , ĉ
j
d−1) be the strings provided by Adv for the j-th layer of the Merkle tree when

decommitting to ui, and similarly let c′
j

= (ĉ′
j

0, . . . , ĉ
′j
d−1) be the corresponding strings for u′i.

Define ĉ0
0 := c and ĉ′

0

0 := c. Since ĉtbt = ui 6= u′i = ĉ′
t

bt , if we take j to be the smallest element in [t]

that ĉjbj 6= ĉ′
j

bj , it holds that h(x) = ĉj−1
bt−j+2

= h(x′) for x = (cj) 6= (c′
j
) = x′. Adv′ is able to find

such colliding pair by computing the relevant hash labels by calling h(·).
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